Experimental and modeling study on the influences of methanol on premixed fuel-rich n-heptane flames
详细信息    查看全文
文摘
The structures of two laminar premixed n-heptane/O2/Ar flames (F1.60: §¶ = 1.60, C/O = 0.51, and F1.80: §¶ = 1.80, C/O = 0.57) and one laminar premixed n-heptane/methanol/O2/Ar flame (F1.80 M: §¶ = 1.80, C/O = 0.51) are studied at low pressure (4000 Pa) by using synchrotron photoionization and molecular-beam sampling-mass spectrometry (PI-MBMS) techniques. Calculations are performed with a modified chemical mechanism, which satisfactorily simulates the tested flames. The results show that as equivalence ratio increases, the maximum flame temperature is reduced and the flame front is shifted away from the burner surface. The post-flame CO concentration in F1.80 M is lower than that in F1.80, which is attributed not only to the difference in inlet carbon flux but also to the variation in CO formation pathway. As methanol is added, the peak concentrations of C2-C7 hydrocarbon intermediates are reduced substantially, and the extent of the reduction in the case of constant C/O ratio is smaller than that in the case of constant equivalence ratio. The production of formaldehyde is promoted with the addition of methanol. Reaction flux analysis indicates that the self-recombination of propargyl radical (C3H3) and the cross reaction between C3H3 and allyl radical (a-C3H5) are the dominant pathways leading from small aliphatics to benzene for all the flames.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700