Fault network modeling of crustal deformation in California constrained using GPS and geologic observations
详细信息    查看全文
文摘
We have developed a kinematic fault network model of crustal deformation in an elastic half-space. Surface deformation is calculated using this model assuming each fault segment slipping beneath a locking depth. Each fault segment connects to its adjacent elements with slip vector continuity imposed at fault nodes or intersections; the degree of the constraints determines whether deformation is block-like or not. We apply this model to invert GPS observations for slip rates on major faults in California with geological rate constraints. Based on the F-test result, we find that lesser block-like models fit the data significantly better than the strictly block-like model. Our final inversion shows a slip rate varying from 20 to 23 mm/yr along the northern San Andreas from the Santa Cruz to the North Coast segment. Slip rates vary from 9 to 13 mm/yr along the Hayward to the Maacama fault segment, and from 15 to 3 mm/yr along the central Calaveras to the West Napa fault segment. For the central California Creeping Zone, the result suggests a depth dependent creep rate with an average of 22 mm/yr over the top 5 km and 32 mm/yr underneath. From the Mojave to San Bernardino Mountain segments, we also find a significant decrease in slip rate along the San Andreas in comparison with the geologic rates, in contrast to a significant increase in slip rate on faults along the eastern California shear zone. Along the southern San Andreas, slip rates vary from 21 to 25 mm/yr from the Coachella Valley to Imperial Valley segments. Slip rates range from 0 to 3 mm/yr across the western Transverse Ranges faults, which is consistent with the regional crustal thickening. Overall slip rates derived from geodetic observations correlate strongly with the geologic slip rates statistically, suggesting high compatibility between geodetic and geologic observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700