Ultrafast Dynamics of Nonequilibrium Electron Transfer in Photoinduced Redox Cycle: Solvent Mediation and Conformation Flexibility
详细信息    查看全文
文摘
We report here our systematic characterization of a photoinduced electron-transfer (ET) redox cycle in a covalently linked donor鈥搒pacer鈥揳cceptor flexible system, consisting of N-acetyl-tryptophan methylester as an electron donor and thymine as an electron acceptor in three distinct solvents of water, acetonitrile, and dioxane. With femtosecond resolution, we determined all the ET time scales, forward and backward, by following the complete reaction evolution from reactants to intermediates and finally to products. Surprisingly, we observed two distinct ET dynamics in water, corresponding to a stacked configuration with ultrafast ET in 0.7 ps and back ET in 4.5 ps and a partially folded C-clamp conformation with ET in 322 ps but back ET in 17 ps. In acetonitrile and dioxane, only the C-clamp conformations were observed with ET in 470 and 1068 ps and back ET in 110 and 94 ps, respectively. These relatively slow ET dynamics in hundreds of picoseconds all showed significant conformation heterogeneity and followed a stretched decay behavior. With both forward and back ET rates determined, we derived solvent reorganization energies and coupling constants. Significantly, we found that solvent molecules intercalated in the cleft of the C-clamp structure mediate electron transfer with a tunneling parameter (尾) of 1.0鈥?.4 脜鈥? and the high-frequency vibration modes in the product(s) couple with the back ET process, leading to the ultrafast back ET dynamics in tens of picoseconds. These findings provide mechanistic insights of nonequilibrium ET dynamics modulated by conformation flexibility, mediated by unique solvent configuration, and accelerated by vibrational coupling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700