Enthalpy of Formation and O–H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment
详细信息    查看全文
  • 作者:Olga V. Dorofeeva ; Oxana N. Ryzhova
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2016
  • 出版时间:April 21, 2016
  • 年:2016
  • 卷:120
  • 期:15
  • 页码:2471-2479
  • 全文大小:444K
  • 年卷期:0
  • ISSN:1520-5215
文摘
Gas-phase O–H homolytic bond dissociation enthalpy in phenol, DH298°(C6H5O–H), is still disputed, despite a large number of experimental and computational studies. In estimating this value, the experimental enthalpy of formation of phenol, ΔfH298°(C6H5OH, g) = −96.4 ± 0.6 kJ/mol (Cox, J. D. Pure Appl. Chem. 1961, 2, 125−128), is often used assuming high accuracy of the experimental value. In the present work a substantially less negative value of ΔfH298°(C6H5OH, g) = −91.8 ± 2.5 kJ/mol was calculated combining G4 theory with an isodesmic reaction approach. A benchmark quality of this result was achieved by using a large number of reliable reference species in isodesmic reaction calculations. Among these are the most accurate ΔfH298° values currently available from the Active Thermochemical Tables (ATcT) for 36 species (neutral molecules, radicals, and ions), anisole with recently reassessed enthalpy of formation, and 13 substituted phenols. The internal consistency of the calculated ΔfH298°(C6H5OH, g) value with the experimental enthalpies of formation of more than 50 reference species suggests that the reported experimental enthalpy of formation of phenol is in error. Taking into account that the enthalpy of formation of phenol has not been investigated experimentally since 1961, the new measurements would be extremely valuable. Using the accurate enthalpies of formation of C6H5OH and C6H5O calculated in the present work, we obtained DH298°(C6H5O–H) = 369.6 ± 4.0 kJ/mol. This value is in satisfactory agreement with that determined from the most precise experimental measurement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700