Site-Dependent Activity of Atomic Ti Catalysts in Al-Based Hydrogen Storage Materials
详细信息    查看全文
文摘
Doping catalytically inactive materials with dispersed atoms of an active species is a promising route toward realizing ultradilute binary catalyst systems. Beyond catalysis, strategically placed metal atoms can accelerate a wide range of solid-state reactions, particularly in hydrogen storage processes. Here we analyze the role of atomic Ti catalysts in the hydrogenation of Al-based hydrogen storage materials. We show that Ti atoms near the Al surface activate gas-phase H2, a key step toward hydrogenation. By controlling the placement of Ti, we have found that the overall reaction, comprising H2 dissociation and H spillover onto the Al surface, is governed by a pronounced trade-off between lowering of the H2 dissociation barrier and trapping of the products near the active site, with a sharp maximum in the overall activity for Ti in the subsurface layer. Our findings demonstrate the importance of controlling the placement of the active species in optimizing the activity of dilute binary systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700