In Vitro Biocompatibility and Antimicrobial Activity of Poly(蔚-caprolactone)/Montmorillonite Nanocomposites
详细信息    查看全文
文摘
A triblock copolymer based on poly(蔚-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL-b-DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL-b-DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL-b-DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700