Prediction of HPLC Retention Index Using Artificial Neural Networks and IGroup E-State Indices
详细信息    查看全文
文摘
A back-propagation artificial neural network (ANN) was used to create a 10-fold leave-10%-out cross-validated ensemble model of high performance liquid chromatography retention index (HPLC-RI) for a data set of 498 diverse druglike compounds. A 10-fold multiple linear regression (MLR) ensemble model of the same data was developed for comparison. Molecular structure was described using IGroup E-state indices, a novel set of structure-information representation (SIR) descriptors, along with molecular connectivity chi and kappa indices and other SIR descriptors previously reported. The same input descriptors were used to develop models by both learning algorithms. The MLR model yielded marginally acceptable statistics with training correlation r2 = 0.65, mean absolute error (MAE) = 83 RI units. External validation of 104 compounds not used for model development yielded validation v2 = 0.49 and MAE = 73 RI units. The distribution of residuals for the fit and validate data sets suggest a nonlinear relationship between retention index and molecular structure as described by the SIR indices. Not surprisingly, the ANN model was significantly more accurate for both training and validation with training set r2 = 0.93, MAE = 30 RI units and validation v2 = 0.84, MAE = 41 RI units. For the ANN model, a total of 91% of validation predictions were within 100 RI units of the experimental value.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700