Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates
详细信息    查看全文
文摘
Mesoporous silica nanoparticles can be modified to perform on-demand stimuli-responsive dosing of therapeutic molecules. The silica network was loaded with iron oxide superparamagnetic nanocrystals, providing the potential to perform targeting and magnetic resonance imaging. Single-stranded DNA was immobilized onto the material surface. The complementary DNA sequence was then attached to magnetic nanoparticles. The present work demonstrates that DNA/magnetic nanoparticle conjugates are able to cap the pores of the magnetic silica particles upon hybridization of both DNA strands. Progressive double-stranded DNA melting as a result of temperature increase gave rise to uncapping and the subsequent release of a mesopore-filled model drug, fluorescein. The reversibility of DNA linkage results in an “on−off” release mechanism. Moreover, the magnetic component of the whole system allows reaching hyperthermic temperatures (42−47 °C) under an alternating magnetic field. This feature leaves open the possibility of a remotely triggered drug delivery. Furthermore, due to its capacity to increase the temperature of the surrounding media, this multifunctional device could play an important role in the development of advanced drug delivery systems for thermochemotherapy against cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700