Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions
详细信息    查看全文
文摘
Platelet-shaped copper sulfide nanocrystals (NCs) with tunable Cu stoichiometry were prepared from Cu-rich covellite (Cu1.1S) nanoplates through their reaction with a Cu(I) complex ([Cu(CH3CN)4]PF6) at room temperature. Starting from a common sample, by this approach it is possible to access a range of compositions in these NCs, varying from Cu1.1S up to Cu2S, each characterized by a different optical response: from the metallic covellite, with a high density of free carriers and strong localized surface plasmon resonance (LSPR), up to Cu2S NCs with no LSPR. In all these NCs the valency of Cu in the lattice stays always close to +1, while the average 鈭? valency of S in covellite gradually evolves to 鈭? with increasing Cu content; i.e., sulfur is progressively reduced. The addition of copper to the starting covellite NCs is similar to the intercalation of metal species in layered transition metal dichalcogenides (TMDCs); i.e., the chalcogen鈥揷halcogen bonds holding the layers are progressively broken to make room for the intercalated metals, while their overall anion sublattice does not change much. However, differently from the TMDCs, the intercalation in covellite NCs is sustained by a change in the redox state of the anion framework. Furthermore, the amount of Cu incorporated in the NCs upon reaction is associated with the formation of an equimolar amount of Cu(II) species in solution. Therefore, the reaction scheme can be written as: Cu1.1S + 2纬Cu(I) 鈫?Cu1.1+纬S + 纬Cu(II).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700