Biocompatible Nanoscale Dispersion of Single-Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity
详细信息    查看全文
文摘
Excitement surrounding the attractive physical and chemical characteristics of single walled carbon nanotubes (SWCNTs) has been tempered by concerns regarding their potential health risks. Here we consider the lung toxicity of nanoscale dispersed SWCNTs (mean diameter 1 nm). Because dispersion of the SWCNTs increases their aspect ratio relative to as-produced aggregates, we directly test the prevailing hypothesis that lung toxicity associated with SWCNTs compared with other carbon structures is attributable to the large aspect ratio of the individual particles. Thirty days after their intratracheal administration to mice, the granuloma-like structures with mild fibrosis in the large airways observed in mice treated with aggregated SWCNTs were absent in mice treated with nanoscale dispersed SWCNTs. Examination of lung sections from mice treated with nanoscale dispersed SWCNTs revealed uptake of the SWCNTs by macrophages and gradual clearance over time. We conclude that the toxicity of SWCNTs in vivo is attributable to aggregation of the nanomaterial rather than the large aspect ratio of the individual nanotubes. Biocompatible nanoscale dispersion provides a scalable method to generate purified preparations of SWCNTs with minimal toxicity, thus allowing them to be used safely in commercial and biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700