Consequences of Increasing Packing Length on the Dynamics of Polymer Melts
详细信息    查看全文
文摘
We revisit the nonuniversal aspect of polymer dynamics by considering both new and existing data on the zero-shear viscosity and linear viscoelastic response of various polymers, each with a wide range of molecular weights. Analysis of the zero-shear viscosity data in terms of the packing length p, whose role in entanglements has been discussed previously by Fetters and co-workers, reveals a behavior that is irreconcilable with our current understanding based on the tube model. Specifically, we find that the transition regime between Rouse and pure reptation dynamics, currently understood as the regime where contour length fluctuations are active, systematically shrinks as the packing length of the polymer increases. Further, we find that the slope of the loss moduli in the high-frequency wing of the terminal peak of well-entangled systems also decreases from the common 鈭?.25 to 鈭?.125 with increasing p. This is contrary to the single expected value of 鈭?.25 from tube models which include contour length fluctuations or 鈭?.5 from pure reptation. These findings hint on possible missing ingredients in our current understanding of polymer dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700