Targeting the de Novo Biosynthesis of Thymidylate for the Development of a PET Probe for Pancreatic Cancer Imaging
详细信息    查看全文
文摘
The development of cancer-specific probes for imaging by positron emission tomography (PET) is gaining impetus in cancer research and clinical oncology. One of the hallmarks of most cancer cells is incessant DNA replication, which requires the continuous synthesis of nucleotides. Thymidylate synthase (TSase) is unique in this context because it is the only enzyme in humans that is responsible for the de novo biosynthesis of the DNA building block 2鈥?deoxy-thymidylate (dTMP). TSase catalyzes the reductive methylation of 2鈥?deoxy-uridylate (dUMP) to dTMP using (R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (MTHF) as a cofactor. Not surprisingly, several human cancers overexpress TSase, which makes it a common target for chemotherapy (e.g., 5-fluorouracil). We envisioned that [11C]-MTHF might be a PET probe that could specifically label cancerous cells. Using stable radiotracer [14C]-MTHF, we had initially found increased uptake by breast and colon cancer cell lines. In the current study, we examined the uptake of this radiotracer in human pancreatic cancer cell lines MIAPaCa-2 and PANC-1 and found predominant radiolabeling of cancerous versus normal pancreatic cells. Furthermore, uptake of the radiotracer is dependent on the intracellular level of the folate pool, cell cycle phase, expression of folate receptors on the cell membrane, and cotreatment with the common chemotherapeutic drug methotrexate (MTX, which blocks the biosynthesis of endogenous MTHF). These results point toward [11C]-MTHF being used as PET probe with broad specificity and being able to control its signal through MTX co-administration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700