Computational Study of the Structure and Rheological Properties of Self-Associating Polymer Networks
详细信息    查看全文
文摘
Utilizing a novel, hybrid molecular dynamics, Monte Carlo simulation, we report on microstructural changes in a polymer network that arise in response to oscillatory shear deformation. We model telechelic self-associating polymers as a course-grained, bead鈥搒pring system. The stress response of the system is obtained from rheological experiments and is reported as a function of frequency and amplitude in both the linear and nonlinear regimes. The frequency-dependent material properties are then correlated with observed changes in the topological network structure. While only minimal structural variations are observed in the elastic regime, a substantial rearrangement occurs in the low frequency, large amplitude viscous regime. Aggregates tend to break apart, resulting in an increased density of free chains. Additionally, the network tends to break and form larger structural elements with an increase multiplicity of chains bridging between the same two aggregates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700