Simultaneous Adsorption–Desorption Processes in the Conductance Transient of Anatase Titania for Sensing Ethanol: A Distinctive Feature with Kinetic Perception
详细信息    查看全文
文摘
A distinctive feature in the operating temperature-dependent conductance transients of titania sensor is identified during chemi-resistive type detection of ethanol vapor. Precisely, simultaneous adsorption of ethanol and desorption of the corresponding oxidized product over anatase titania sensor are reflected systematically in the response transients measured with the rise in operating temperature. An attempt is made here to understand the origin of the said feature based on the reaction sequences of ethanol over sensor surface. For a fixed ethanol concentration (200 ppm), the conductance transients obtained for response process are modeled using Langmuir–Hinshelwood reaction mechanism and the characteristic time constants are estimated for adsorption and desorption of ethanol. From the temperature variations of these characteristic time constants, the activation energies for the adsorption and desorption of ethanol over sensor surface is estimated. In addition, the general ethanol sensing characteristics (response %, response time, etc.) of the anatase titania is also reported by varying the ethanol concentration (50–500 ppm) and sensor operating temperature (275–375 °C).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700