How Biotransformation Influences Toxicokinetics of Azole Fungicides in the Aquatic Invertebrate Gammarus pulex
详细信息    查看全文
  • 作者:Andrea Rösch ; Sabine Anliker ; Juliane Hollender
  • 刊名:Environmental Science & Technology
  • 出版年:2016
  • 出版时间:July 5, 2016
  • 年:2016
  • 卷:50
  • 期:13
  • 页码:7175-7188
  • 全文大小:928K
  • 年卷期:0
  • ISSN:1520-5851
文摘
Biotransformation is a key process that can greatly influence the bioaccumulation potential and toxicity of organic compounds. In this study, biotransformation of seven frequently used azole fungicides (triazoles: cyproconazole, epoxiconazole, fluconazole, propiconazole, tebuconazole and imidazoles: ketoconazole, prochloraz) was investigated in the aquatic invertebrate Gammarus pulex in a 24 h exposure experiment. Additionally, temporal trends of the whole body internal concentrations of epoxiconazole, prochloraz, and their respective biotransformation products (BTPs) were studied to gain insight into toxicokinetic processes such as uptake, elimination and biotransformation. By the use of high resolution tandem mass spectrometry in total 37 BTPs were identified. Between one (ketoconazole) and six (epoxiconazole) BTPs were identified per parent compound except for prochloraz, which showed extensive biotransformation reactions with 18 BTPs detected that were mainly formed through ring cleavage or ring loss. In general, most BTPs were formed by oxidation and conjugation reactions. Ring loss or ring cleavage was only observed for the imidazoles as expected from the general mechanism of oxidative ring openings of imidazoles, likely affecting the bioactivity of these BTPs. Overall, internal concentrations of BTPs were up to 3 orders of magnitude lower than that of the corresponding parent compound. Thus, biotransformation did not dominate toxicokinetics and only played a minor role in elimination of the respective parent compound, with the exception of prochloraz.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700