Donor-Free Phosphenium鈥揗etal(0)鈥揌alides with Unsymmetrically Bridging Phosphenium Ligands
详细信息    查看全文
文摘
Reactions of (cod)MCl2 (cod = 1,5 cyclooctadiene, M = Pd, Pt) with N-heterocyclic secondary phosphines or diphosphines produced complexes [(NHP)MCl]2 (NHP = N-heterocyclic phosphenium). The Pd complex was also accessible from a chlorophosphine precursor and Pd2(dba)3. Single-crystal X-ray diffraction studies established the presence of dinuclear complexes that contain 渭-bridging NHP ligands in an unsymmetrical binding mode and display a surprising change in metal coordination geometry from distorted trigonal (M = Pd) to T-shaped (M = Pt). DFT calculations on model compounds reproduced these structural features for the Pt complex but predicted an unusual C2v-symmetric molecular structure with two different metal coordination environments for the Pd species. The deviation between this structure and the actual centrosymmetric geometry is accounted for by the prediction of a flat energy hypersurface, which permits large distortions in the orientation of the NHP ligands at very low energetic cost. The DFT results and spectroscopic studies suggest that the title compounds should be described as phosphenium鈥搈etal(0)鈥揾alides rather than conventional phosphido complexes of divalent metal cations and indicate that the NHP ligands receive net charge donation from the metals but retain a distinct cationic character. The unsymmetric NHP binding mode is associated with an unequal distribution of 蟽-donor/蟺-acceptor contributions in the two M鈥揚 bonds. Preliminary studies indicate that reactions of the Pd complex with phosphine donors provide a viable source of ligand-stabilized, zerovalent metal atoms and metal(0)鈥揾alide fragments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700