Probing ZnAPO-34 Self-Assembly Using Simultaneous Multiple in Situ Techniques
详细信息    查看全文
文摘
The hydrothermal crystallization of ZnAPO-34 (CHA) molecular sieves has been studied for the first time using a combined in situ four technique setup utilizing SAXS/WAXS/XAFS/Raman to follow the various steps that occur during the complex transformation process of an amorphous precursor gel into a crystalline microporous material. These data are also supported by a detailed characterization of both the precursor gel (using Raman, NMR, XAFS, and TEM) and the final crystalline material (NMR, XRD, XAFS, TEM, and energy minimization calculations). Thus, all components during the various stages of reaction have been studied allowing for fundamental insight from the atomic/molecular level up to the bulk scale. On the basis of this multitechnique approach, the following observations are made: (i) The initial formation of a heterogeneous gel containing predominantly separate Al鈭扥鈭扨 and Zn鈭扥鈭扨 containing species as well as the presence of particles with a broad size distribution were noted. (ii) During sample heating, the SAXS data reveal a second population (14鈭?6 nm) at the onset of crystallization, which were also accompanied by changes in both the ZnO<sub>3sub>鈭扥鈭扥<sub>3sub>P environment (XAFS) and the template conformer state (Raman). (iii) Before crystallization, Zn<sup>2+sup> species appear heterogeneously distributed throughout the sample, but in the final crystalline CHA phase Zn<sup>2+sup>, it is much more homogeneously distributed. One template molecule is found per CHA cage. (iv) Zn<sup>2+sup> is found to promote nano particle growth and that results in the production of increasing amounts of crystalline material. (v) The structure-directing effect of Zn<sup>2+sup> ions leading to CHA formation is most likely initiated via an electrostatic interaction between Zn<sup>2+sup> in a Zn鈭扥鈭扨鈭扥鈭扐l鈭扥鈭扨 matrix and the TEA template.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700