Differences in Specificity and Selectivity Between CBP and p300 Acetylation of Histone H3 and H3/H4
详细信息    查看全文
  • 作者:Ryan A. Henry ; Yin-Ming Kuo ; Andrew J. Andrews
  • 刊名:Biochemistry
  • 出版年:2013
  • 出版时间:August 27, 2013
  • 年:2013
  • 卷:52
  • 期:34
  • 页码:5746-5759
  • 全文大小:495K
  • 年卷期:v.52,no.34(August 27, 2013)
  • ISSN:1520-4995
文摘
Although p300 and CBP lysine acetyltransferases are often treated interchangeably, the inability of one enzyme to compensate for the loss of the other suggests unique roles for each. As these deficiencies coincide with aberrant levels of histone acetylation, we hypothesized that the key difference between p300 and CBP activity is differences in their specificity/selectivity for lysines within the histones. Utilizing a label-free, quantitative mass spectrometry based technique, we determined the kinetic parameters of both CBP and p300 at each lysine of H3 and H4, under conditions we would expect to encounter in the cell (either limiting acetyl-CoA or histone). Our results show that while p300 and CBP acetylate many common residues on H3 and H4, they do in fact possess very different specificities, and these specificities are dependent on whether histone or acetyl-CoA is limiting. Steady-state experiments with limiting H3 demonstrate that both CBP and p300 acetylate H3K14, H3K18, H3K23, with p300 having specificities up to 1010-fold higher than CBP. Utilizing tetramer as a substrate, both enzymes also acetylate H4K5, H4K8, H4K12, and H4K16. With limiting tetramer, CBP displays higher specificities, especially at H3K18, where CBP specificity is 1032-fold higher than p300. With limiting acetyl-CoA, p300 has the highest specificity at H4K16, where specificity is 1018-fold higher than CBP. This discovery of unique specificity for targets of CBP- vs p300-mediated acetylation of histone lysine residues presents a new model for understanding their respective biological roles and possibly an opportunity for selective therapeutic intervention.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700