Real-Time Electrochemical Monitoring of Cellular H2O2 Integrated with In Situ Selective Cultivation of Living Cells Based on Dual Functional Protein Microarrays at Au−TiO
详细信息    查看全文
文摘
This paper demonstrates a novel strategy for site-selective cell adhesion and in situ cultivation of living cells, integrated with real-time monitoring of cellular small biomolecules based on dual functional protein microarrays. The protein microarrays have been produced on the superhydrophobic|philic Au−TiO2 micropatterns, through further modification of l-cysteine (Cys) and followed by successive immobilization of a model protein, cytochrome c (cyt c). Experimental results have revealed that the created cyt c microarrays play dual functions: one is employed as a robust substrate for site-selective cell adhesion and in situ cultivation of living cells, because the protein microarrays exhibit high selectivity and bioaffinity toward cells, as well as long biostability under cell culture condition up to 7 days. Meanwhile, the cyt c microarrays can also serve as sensing elements for hydrogen peroxide (H2O2) due to the inherent enzymatic activity of the heme center in cyt c. Direct electron transfer of cyt c has been enhanced at the Cys-modified Au−TiO2 (Au−TiO2/Cys) microarrays, and the electrochemical behavior can be tuned by varying the width and spacing of the microband arrays. Furthermore, cyt c is stably immobilized on the Au−TiO2/Cys microarrays and maintains its enzymatic activity after confined on the microarrays. Thus, the optimized cyt c microarrays show striking analytical performance for H2O2 determination, e.g., high sensitivity and selectivity, broad linear range from 10−9 M to 10−2 M, low detection limit down to 2 nM, and short response time within 5 s. As a result, the excellent analytical properties of the cyt c microarrays, as well as the characteristic of the protein microarrays themselves, including high selectivity, long biostability, and good bioaffinity, opens up a method for selective in situ cultivation of cells integrated with real-time detection of signaling biomolecules such as H2O2 released from living cells, which shows potential for physiological and pathological investigations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700