Enzyme-Based NAND and NOR Logic Gates with Modular Design
详细信息    查看全文
文摘
The logic gates NAND/NOR were mimicked by enzyme biocatalyzed reactions activated by sucrose, maltose and phosphate. The subunits performing AND/OR Boolean logic operations were designed using maltose phosphorylase and cooperative work of invertase/amyloglucosidase, respectively. Glucose produced as the output signal from the AND/OR subunits was applied as the input signal for the INVERTER gate composed of alcohol dehydrogenase, glucose oxidase, microperoxidase-11, ethanol and NAD+, which generated the final output in the form of NADH inverting the logic signal from 0 to 1 or from 1 to 0. The final output signal was amplified by a self-promoting biocatalytic system. In order to fulfill the Boolean properties of associativity and commutativity in logic networks, the final NADH output signal was converted to the initial signals of maltose and phosphate, thus allowing assembling of the same standard units in concatenated sequences. The designed modular approach, signal amplification and conversion processes open the way toward complex logic networks composed of standard elements resembling electronic integrated circuitries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700