Protein–Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study
详细信息    查看全文
文摘
An example of biocathode based on bilirubin oxidase (BOx) was used to demonstrate how density functional theory can be combined with docking simulations in order to study the interface interactions between the enzyme and specifically designed electrode surface. The electrode surface was modified through the adsorption of bilirubin, the natural substrate for BOx, and the prepared electrode was electrochemically characterized using potentiostatic measurements. The experimentally determined current densities showed that the presence of bilirubin led to significant improvement of the cathode operation. On the basis of the computationally calculated binding energies of bilirubin to the graphene support and BOx and the analysis of the positioning of bilirubin relative to the support and T1 Cu atom of the enzyme, we hypothesize that the bilirubin serves as a geometric and electronic extension of the support. The computational results further confirm that the modification of the electrode surface with bilirubin provides an optimal orientation of BOx toward the support but also show that bilirubin facilitates the interfacial electron transfer by decreasing the distance between the electrode surface and the T1 Cu atom.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700