Competing Fracture in Kinetically Controlled Transfer Printing
详细信息    查看全文
文摘
Transfer printing by kinetically switchable adhesion to an elastomeric stamp shows promise as a powerfulmicromanufacturing method to pickup microstructures and microdevices from the donor substrate and to print themto the receiving substrate. This can be viewed as the competing fracture of two interfaces. This paper examines themechanics of competing fracture in a model transfer printing system composed of three laminates: an elastic substrate,an elastic thin film, and a viscoelastic member (stamp). As the system is peeled apart, either the interface betweenthe substrate and thin film fails or the interface between the thin film and the stamp fails. The speed-dependent natureof the film/stamp interface leads to the prediction of a critical separation velocity above which separation occursbetween the film and the substrate (i.e., pickup) and below which separation occurs between the film and the stamp(i.e., printing). Experiments verify this prediction using films of gold adhered to glass, and the theoretical treatmentextends to consider the competing fracture as it applies to discrete micro-objects. Temperature plays an important rolein kinetically controlled transfer printing with its influences, making it advantageous to pickup printable objects atthe reduced temperatures and to print them at the elevated ones.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700