Lifetime Measurements Well below the Optical Diffraction Limit
详细信息    查看全文
文摘
The dependence of excited electron–hole state properties on the size of their host semiconducting nanostructures is the seed for a plethora of applications such as light-emitting diodes (LEDs) and photovoltaic cells. However, the inability of state-of-the art, diffraction-limited optical techniques to probe lifetime variations at the scale of individual quantum emitters precludes the full understanding of the nanostructures’ optical properties. Here, we demonstrate the measurement of the individual lifetimes of quantum emitters a few angströms thick separated by only a few nanometers, lifting the ambiguities usually faced by diffraction-limited techniques. This relies on the ability to monitor with subnanometer precision a fast electron beam that triggers extremely localized cathodoluminescence signals further analyzed through intensity interferometry (spatially resolved time-correlated cathodoluminescence, SRTC-CL). We demonstrate SRTC-CL to be a true nanometer counterpart of time-resolved photoluminescence, opening the way for a deeper understanding of suboptical wavelength objects such as biomarkers, quantum heterostructures, active parts of LEDs, or quantum optics devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700