Nonequilibrium Vibrational Excitation of OH Radicals Generated During Multibubble Cavitation in Water
详细信息    查看全文
文摘
The sonoluminescence (SL) spectra of OH(A2+) excited state produced during the sonolysis of water sparged with argon were measured and analyzed at various ultrasonic frequencies (20, 204, 362, 609, and 1057 kHz) in order to determine the intrabubble conditions created by multibubble cavitation. The relative populations of the OH(A2+) v鈥?/i> = 1鈥? vibrational states as well as the vibronic temperatures (Tv, Te) have been calculated after deconvolution of the SL spectra. The results of this study provide evidence for nonequilibrium plasma formation during sonolysis of water in the presence of argon. At low ultrasonic frequency (20 kHz), a weakly excited plasma with Brau vibrational distribution is formed (Te 0.7 eV and Tv 5000 K). By contrast, at high-frequency ultrasound, the plasma inside the collapsing bubbles exhibits Treanor behavior typical for strong vibrational excitation. The Te and Tv values increase with ultrasonic frequency, reaching Te 1 eV and Tv 9800 K at 1057 kHz.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700