Indirect Phase Transformation of CuO to Cu2O on a Nanowire Surface
详细信息    查看全文
文摘
The reduction of CuO nanowires (NWs) to Cu2O NWs undergoes an indirect phase transformation on the surface: from single crystalline CuO, to a disordered Cu2−δO phase, and then to crystalline Cu2O. A 9–12 nm disordered Cu2−δO is formed on the NW surface by exposing CuO NWs to CO at 1 Torr, 300 °C for 30 min. After 60 min, this layer decreases to 2–3 nm and is eliminated after 180 min. Energy dispersive X-ray spectroscopy using a scanning tunneling electron microscope and across a single NW reveals the disordered layer to be O-rich with respect to Cu2O with a maximum at. % Cu:O = 1.8. X-ray photoelectron spectroscopy shows adsorbed CO on the surface as evidence of the reduction reaction. Micro-Raman spectroscopy tracks the transformation in NWs as a function of reduction time. A CO enabled surface reduction reaction coupled to diffusion-limited transport of “nonlattice” O to the surface is proposed as a mechanism for Cu2−δO formation. The initial buildup of out-diffusing O to the surface appears to aid the formation of the disordered surface layer. The transformation follows Ostwald–Lussac’s law which predicts formation of unstable phases over stable phases, when phase transformation rates are limited by kinetic or diffusional processes. The study provides a generalized approach for facile growth of few nanometer transient layers on multivalent, metal oxide NW surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700