Structure of Isolated 1,4-Butanediol: Combination of MP2 Calculations, NBO Analysis, and Matrix-Isolation Infrared Spectroscopy
详细信息    查看全文
文摘
Theoretical calculations at the MP2 level, NBO and AIM analysis, and matrix-isolation infrared spectroscopy have been used to investigate the structure of the isolated molecule of 1,4-butanediol (1,4-BDO). Sixty-five structures were found to be minima on the potential energy surface, and the three most stable forms are characterized by a folded backbone conformation leading to the formation of an intramolecular H-bond. To better characterize the intramolecular interactions and particularly the hydrogen bonds, natural bond orbital analysis (NBO) was performed for the four most stable conformers, and was further complemented with an atoms-in-molecules (AIM) topological analysis. Infrared spectra of 1,4-BDO isolated in low-temperature argon and xenon matrixes show a good agreement with a population-weighted mean theoretical spectrum, and the spectral features of the conformers expected to be trapped in the matrixes were observed experimentally. Annealing the xenon matrix from 20 to 60 K resulted in significant spectral changes, which were interpreted based on the barriers to intramolecular rotation. An estimation of the intramolecular hydrogen bond energy was carried out following three different methodologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700