Double Primary Relaxation in a Highly Anisotropic Orientational Glass-Former with Low-Dimensional Disorder
详细信息    查看全文
文摘
The freezing of the cooperative reorientational motions in orientationally disordered (OD) molecular crystals marks the so-called “glassy” transition, which may be considered a lower-dimensional version of the structural glass transition. Although structural glasses display both positional and orientational disorder, in orientational glasses, however, the disorder involves exclusively the orientational degrees of freedom of the constituent molecules, while the molecular centers of mass form an ordered lattice. We report here on a glass-forming system with even fewer degrees of freedom, namely, the OD phase of a dipolar benzene derivative, pentachloronitrobenzene (C<sub>6sub>Cl<sub>5sub>NO<sub>2sub>). We probe the orientational dynamics of pentachloronitrobenzene as a function of temperature and pressure by means of dielectric spectroscopy (and high-pressure density measurements), and we show that, due to its anisotropy, the system exhibits a double primary relaxation feature associated with two distinct motions of the molecular dipole moment. This complex relaxation scenario shows a scaled dependence on the thermodynamic variables (P,T), with all relaxation times collapsing onto a single curve for each relaxation when plotted versus a specific-volume-dependent scaled variable TV<sup>γsup>. Our findings are in line with the recent prediction by Dyre and co-workers of the existence of a hidden-scale invariance also in van der Waals crystalline materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700