Interfacial Depletion Regions: Beyond the Space Charge Limit in Thick Bulk Heterojunctions
详细信息    查看全文
文摘
Space charge limited photocurrent is typically described as the limiting factor in carrier extraction efficiency for organic bulk heterojunctions with increasing thickness. It successfully characterizes the carrier extraction efficiency in these devices with thin to moderate thickness and dissimilar carrier mobilities. However, in this article we show that space charge limited photocurrent cannot solely explain the intensity dependent spectral response of extremely thick organic photovoltaics. In addition, interfacial depletion regions near the contacts contribute to the field distribution and carrier collection. Here, we describe charge collection efficiency with an optical p-i-n model, allowing for collection from band bending due to mobility-induced and interfacial-doping-induced space charge regions. We verify the model with up to 1400 nm thick spray-coated devices in both p-i-n (conventional) and n-i-p (inverted) architecture, including variations of thickness, illumination intensity, transport materials, and bifacial (semitransparent) devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700