Spontaneous Oxygen Isotope Exchange between Carbon Dioxide and Oxygen-Containing Minerals: Do the Minerals “Breathe” CO2?
详细信息    查看全文
文摘
The spontaneous isotopic exchange of oxygen atoms between dry powdered Ti16O2-containing minerals and gaseous C18O2 was studied using gas-phase high-resolution Fourier transform infrared absorption spectroscopy (FTIR) of carbon dioxide isotopologues. The absorption rovibrational spectra of all measured carbon dioxide isotopologues were assigned and then used for quantification of the time-dependent isotope exchange of oxygen atoms (16O) from the surface crystalline lattice of the solid mineral samples with (18O) oxygen atoms from gaseous C18O2. Similar to our previous studies devoted to the isotopic exchange activity of titanium dioxide, we determined that rutile, montmorillonite, siderite, calcite, and basaltic minerals also exhibit unexpectedly significant oxygen mobilities between solid and gas phases. The rate of formation of gaseous C16O2 is found to be highly dependent on the nature of the mineral sample. Our previous studies together with the results presented here suggest that such crystal–surface oxygen isotope mobilities can be explained by two mechanisms: the cluster-like structure of finely powdered materials or the existence of oxygen-deficiency sites in the structure of the surface crystal lattice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700