Monitoring Ice Nucleation in Pure and Salty Water via High-Speed Imaging and Computer Simulations
详细信息    查看全文
文摘
High-speed monitoring of the freezing process of freely suspended supercooled pure and salty water droplets is reported for the first time. Combined visual (VIS) and infrared (IR) imaging directly delivers three-dimensional and surface temperature information about the proceeding freezing front with up to 2000 frames per second. The freezing behavior changes gradually up to 1 M and dramatically above a 1 M NaCl concentration. To capture the initial stage of the nucleation molecular dynamics (MD), calculations with atomistic and femtosecond resolution have been performed, and homogeneous ice nucleation in a salt solution has been successfully simulated. A combination of experimental imaging and calculations allows one to unravel structural (e.g., preferred bulk or surface location of the ice nucleus and final ion distribution) and dynamical (time scales for nucleation and freezing) aspects of the freezing process in water and salt solutions. While the thermodynamic consequence of added salt, that is, lowering of the freezing point, is well-known, here, we elucidate the kinetic antifreeze effect of added salt and the molecular origin of the corresponding slow-down of ice nucleation and freezing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700