Deconstructing the ONIOM Hessian: Investigating Method Combinations for Transition Structures
详细信息    查看全文
文摘
Developments in biochemistry and materials sciences have led to increasing interest in the reactivity of large chemical systems, presenting theoretical and computational challenges that can be addressed with hybrid methods such as ONIOM. Here, we show that the diagonalized ONIOM Hessian can be partitioned/deconstructed into contributions from the individual subcalculations鈥攊ndicating the curvature of their potential energy surfaces (PESs)鈥攚ithout increasing the computational cost. The resulting pseudofrequencies have particular application in the study of transition structures and higher-order saddle points with ONIOM, where we find that an imaginary frequency may result from combining subcalculations for which the corresponding vibrational frequencies are all real. Two cycloaddition reactions, including functionalization of a 150 atom (5,5) single-walled carbon nanotube, demonstrate how this analysis of pseudofrequencies allows identification of critical points where further exploratory work should be carried out to ensure that the ONIOM PES correctly approximates the target.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700