Layer-Structured Copper Antimony Chalcogenides (CuSbSexS2鈥?i>x): Stable Electrode Materials for Supercapacitors
详细信息    查看全文
文摘
The ever-growing need for energy generation and storage applications demands development of materials with high performance and long-term stability. A sizable number of chalcogenide-based materials have been investigated for supercapacitor applications. Layer-structured chalcogenides are advantageous in terms of providing large surface area with good ionic conductivity and ability to host a variety of atoms or ions between the layers. CuSbS2 is a ternary layered chalcogenide material that is composed of earth abundant and less-toxic elements. For the first time, we have developed a simple colloidal method for the synthesis of CuSbSexS2鈥?i>x mesocrystals over the whole composition range (0 鈮?x 鈮?2) by substitution of S with Se. Our approach yields mesocrystals with belt-like morphology for all the compositions. X-ray diffraction results show that substitution of sulfur with selenium in CuSbS2 enables tuning the width of the interlayer gap between the layers. To investigate the suitability of CuSbSexS2鈥?i>x mesocrystals for supercapacitor applications, we have carried out electrochemical measurements by cyclic voltammetry and galvanostatic charge鈥揹ischarge measurements in 3 M KOH, NaOH and LiOH electrolytes. Our investigations reveal that the mesocrystals exhibit promising specific capacitance values with excellent cyclic stability. The unique properties of CuSbSexS2鈥?i>x mesocrystals make them attractive both for solar energy conversion and energy storage applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700