Visible Photoelectrochemical Water Splitting Based on a Ru(II) Polypyridyl Chromophore and Iridium Oxide Nanoparticle Catalyst
详细信息    查看全文
文摘
Preparation of Ru(II) polypyridyl鈥搃ridium oxide nanoparticle (IrOX NP) chromophore鈥揷atalyst assemblies on an FTO|nanoITO|TiO2 core/shell by a layer-by-layer procedure is described for application in dye-sensitized photoelectrosynthesis cells (DSPEC). Significantly enhanced, bias-dependent photocurrents with Lumencor 455 nm 14.5 mW/cm2 irradiation are observed for core/shell structures compared to TiO2 after derivatization with [Ru(4,4鈥?PO3H2bpy)2(bpy)]2+ (RuP2) and uncapped IrOX NPs at pH 5.8 in NaSiF6 buffer with a Pt cathode. Photocurrents arising from photolysis of the resulting photoanodes, FTO|nanoITO|TiO2|鈭扲uP2,IrO2, are dependent on TiO2 shell thickness and applied bias, reaching 0.2 mA/cm2 at 0.5 V vs AgCl/Ag with a shell thickness of 6.6 nm. Long-term photolysis in the NaSiF6 buffer results in a marked decrease in photocurrent over time due to surface hydrolysis and loss of the chromophore from the surface. Long-term stability, with sustained photocurrents, has been obtained by atomic layer deposition (ALD) of overlayers of TiO2 to stabilize surface binding of 鈭扲uP2 prior to the addition of the IrOX NPs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700