Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection
详细信息    查看全文
文摘
Noncovalent complexation of plasmid DNA (pDNA) with cell-penetrating peptides (CPPs) forms relatively large complexes with poor gene expression. Yet, condensing these CPP-pDNA complexes via addition of calcium chloride produces small and stable nanoparticles with high levels of gene expression. This simple formulation offered high transfection efficiency and negligible cytotoxicity in HEK-293 (a virus-immortalized kidney cell) and A549 (a human lung cancer cell line). Small changes in CPP charge type, charge spacing, and hydrophobicity were studied by using five arginine-rich CPPs: the well-known hydrophilic polyarginine R9 peptide, a hydrophilic RH9 peptide, and three amphiphilic peptides (RA9, RL9, and RW9) with charge distributions that favor membrane penetration. R9 and RW9 nanoparticles were significantly more effective than the other CPPs under most formulation conditions. However, these CPPs exhibit large differences in membrane penetration potential. Maximum transfection resulted from an appropriate balance of complexing with pDNA, releasing DNA, and membrane penetration potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700