Atomistic Approach To Simulate Processes Relevant for the Efficiencies of Organic Solar Cells as a Function of Molecular Properties. II. Kinetic Aspects
详细信息    查看全文
文摘
The individual steps of the light-to-energy conversion process in the vicinity of the interfaces of organic solar cells are investigated with kinetic Monte Carlo simulations employing Marcus hopping rates obtained from quantum-chemical calculations. A chemically diverse set of p-type semiconducting molecules in heterojunction with fullerene C60 is used. Starting with exciton diffusion, exciton dissociation, charge generation, and charge separation are modeled on an atomistic level. Numerous aspects were already analyzed, but comprehensive simulations including all three processes in amorphous model interface systems and a comparison of various different molecular p-type semiconductors seem to be missing. Our investigation identifies several important kinetic effects that could limit device efficiencies, such as the strong reduction of charge transport rates in the vicinity of the interface due to Coulomb interactions between the charges, the importance of adjusting the relative rates of exciton transfer and dissociation, and the impact of morphology. Charge drift velocities and hole mobilities obtained from the simulations compare well with experimental values indicating that the main effects are covered by the simulations. A correlation between experimental short-circuit currents and simulated charge drift velocities suggests that slow charge-transfer processes could represent a major efficiency-limiting parameter in organic solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700