Cellulose Nanofibril-Based Multilayered Thin Films: Effect of Ionic Strength on Porosity, Swelling, and Optical Properties
详细信息    查看全文
文摘
TEMPO-oxidized cellulose nanofibrils (CNF) and synthetic poly(allylamine) hydrochloride (PAH) were used to build multilayered thin films via the dipping-assisted layer-by-layer technique. We used the ionic strength, in both CNF suspension and PAH solution, as a key parameter to control the structure of the films. Three systems with different ionic strength parameters were investigated. We studied the growth of the films and their surface morphology by ellipsometry and AFM and investigated their porosity and swelling behavior using neutron reflectivity. Our results showed that the PAH conformation is a determining factor not only for film growth but also for structural properties: with salt-free PAH solution where chains have extended conformation, the resulting films have lower porosity and higher swelling ratios, compared to the ones made using high ionic strength (1 M) PAH solution, where chains have a coiled conformation. The slight aggregation of CNF, induced by adding a small amount of salt (12 mM), has less influence on film growth and porosity, whereas it has a greater impact on swelling. The origin of these differences is discussed. The structure of the films obtained was linked to their optical properties and, in particular, to their antireflective character.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700