Benchmark of Bethe-Salpeter for Triplet Excited-States
详细信息    查看全文
文摘
We have evaluated the accuracy of the Bethe-Salpeter singlet–triplet transition energies as well as singlet–triplet and triplet–triplet splittings for 20 organic molecules, using as reference the CC3 values determined by Thiel and co-workers with both the TZVP and aug-cc-pVTZ atomic basis sets. Our excitation energies are obtained on the basis of GW quasiparticle energy levels that are self-consistently converged with respect to the starting DFT eigenvalues. In its current form, BSE/GW is often unable to provide a balanced description of both singlet and triplet excited-states. While the singlet–singlet and triplet–triplet energy separations are obtained accurately, triplets are located too close in energy from the ground-state, by typically −0.55 eV when using standard functionals to generate the starting eigenstates. Applying the Tamm-Dancoff approximation upshifts the BSE triplet energies and allows reducing this error to ca. −0.40 eV, while using M06-HF eigenstates allows a further increase and hence a reduction of the error for triplet states, but at the cost of larger errors for the singlet excited-states. At this stage, the most accurate TD-DFT estimates therefore remain competitive for computing singlet–triplet transition energies. Indeed, with M06-2X, irrespective of the application or not of the Tamm-Dancoff approximation and of the selected atomic basis set, the deviations obtained with TD-DFT are rather small.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700