Atomic Structures and Gram Scale Synthesis of Three Tetrahedral Quantum Dots
详细信息    查看全文
文摘
Luminescent semiconducting quantum dots (QDs) are central to emerging technologies that range from tissue imaging to solid-state lighting. However, existing samples are heterogeneous, which has prevented atomic-resolution determination of their structures and obscured the relationship between their atomic and electronic structures. Here we report the synthesis, isolation, and structural characterization of three cadmium selenide QDs with uniform compositions (Cd35Se20(X)30(L)30, Cd56Se35(X)42(L)42, Cd84Se56(X)56(L)56; X = O2CPh, L = H2N-C4H9). Their UV-absorption spectra show a lowest energy electronic transition that decreases in energy (3.54 eV, 3.26 eV, 3.04 eV) and sharpens as the size of the QD increases (fwhm = 207 meV, 145 meV, 115 meV). The photoluminescence spectra of all three QDs are broad with large Stokes shifts characteristic of trap-luminescence. Using a combination of single-crystal X-ray diffraction and atomic pair distribution function analysis, we determine the structures of their inorganic cores, revealing a series of pyramidal nanostuctures with cadmium terminated {111} facets. Theoretical and experimental studies on these materials will open the door to a deeper fundamental understanding of structure鈥損roperty relationships in quantum-confined semiconductors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700