Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran
详细信息    查看全文
文摘
Biomass conversion to fuels and chemicals provides sustainability, but the highly oxygenated nature of a large fraction of biomass-derived molecules requires removal of the excess oxygen and partial hydrogenation in the upgrade, typically met by hydrodeoxygenation processes. Catalytic transfer hydrogenation is a general approach in accomplishing this with renewable organic hydrogen donors, but mechanistic understanding is currently lacking. Here, we elucidate the molecular level reaction pathway of converting hemicellulose-derived furfural to 2-methylfuran on a bifunctional Ru/RuOx/C catalyst using isopropyl alcohol as the hydrogen donor via a combination of isotopic labeling and kinetic studies. Hydrogenation of the carbonyl group of furfural to furfuryl alcohol proceeds through a Lewis acid-mediated intermolecular hydride transfer and hydrogenolysis of furfuryl alcohol occurs mainly via ring-activation involving both metal and Lewis acid sites. Our results show that the bifunctional nature of the catalyst is critical in the efficient hydrodeoxygenation of furanics and provides insights toward the rational design of such catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700