Silver Nanoplates: From Biological to Biomimetic Synthesis
详细信息    查看全文
文摘
This paper describes the synthesis of single-crystalline Ag nanoplates using the extract of unicellular green alga Chlorella vulgaris at room temperature. Proteins in the extract were involved in the biological synthesis, providing the dual function of Ag ion reduction and shape-controlled synthesis of nanosilver. Hydroxyl groups in Tyr residues and carboxyl groups in Asp and/or Glu residues were further identified as the most active functional groups for Ag ion reduction and for directing the anisotropic growth of Ag nanoplates, respectively. The kinetics of Ag ion reduction in biological systems was discussed and probed by using custom-designed peptides. The results showed the Tyr content (the reduction source) and the content of Ag complexers (the reaction inhibitors, e.g., His and Cys) in the protein molecules as important factors affecting the reduction kinetics. The comprehensive system identification effort has led to the design of a simple bifunctional tripeptide (DDY-OMe) with one Tyr residue as the reduction source and two carboxyl groups in the Asp residues as shape-directors, which could produce small Ag nanoplates with low polydispersivity in good yield (>55%). The roles of the carboxyl groups in the formation of Ag nanoplates were also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700