Diffusion-Induced Shape Evolution in Multinary Semiconductor Nanostructures
详细信息    查看全文
文摘
The classical mechanism of crystal growth for architecting different nanomaterials in solution, although widely studied, is mainly restricted to binary semiconductor systems. However, this method is not applicable to multinary nanomaterials, which have multivalent cations possessing different reactivity under identical reaction conditions. Hence, the shape architectures of these nanostructures, which require a more sophisticated approach, remain relatively unexplored compared to those of binary semiconductors. Owing to the importance of the multinary materials, which are emerging as excellent green materials for both light harvesting and light emission, we investigated the diffusion-rate-controlled formation of ternary AgGaSe2 nanostructures and studied their heterostructures with noble metals. Controlling the changes in the rate of diffusion of the Ag ions resulted in the formation of tadpole-shaped AgGaSe2 ternary nanostructures. In situ study by collecting a sequential collection of samples has been carried out, and the conversion of amorphous Ga-selenide to crystalline AgGaSe2 has been monitored. In addition, heterostructures of tadpole AgGaSe2 with noble metals, Au and Pt, were designed, and their photocatalytic behaviors were studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700