Fabrication of ZnO Thin Films from Nanocrystal Inks
详细信息    查看全文
文摘
Zinc oxide nanocrystals were prepared in ethanol and spin-cast to form semiconductor nanocrystal thin films that were thermally annealed at temperatures between 100 and 800 °C. Particle size, monodispersity, and film porosity were determined by X-ray diffraction, ultraviolet−visible absorption spectroscopy, and spectroscopic ellipsometry, respectively. Film porosity rapidly decreased above 400 °C, from 32% to 26%, which coincided with a change in electronic properties. Above 400 °C, the ZnO electron mobility, determined from FET transfer characteristics, increased from 10−3 to 10−1 cm2 V s−1, while the surface resistivity, determined from electrical impedance, decreased from 107 to 103 Ω m over the same temperature range. Below the densification point, nanoparticle core resistivity was found to increase from 104 to 106 Ω m, which is caused by the increasing polydispersity in the quantized energy levels of the nanocrystals. From 100 to 800 °C, crystallite size was found to increase from 5 to 18 nm in diameter. The surface resistance was decreased dramatically by passivation with butane thiol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700