Phase Conversion from Hexagonal CuSySe1鈥?i>y to Cubic Cu2鈥?i>xSySe1鈥?i>y: Composition Variation, Morphology Evolution,
详细信息    查看全文
文摘
In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu鈥揝鈥揝e alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuSySe1鈥?i>y nanoplates and face centered cubic (fcc) Cu2鈥?i>xSySe1鈥?i>y single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu鈥揝鈥揝e alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu鈥揝鈥揝e alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

Keywords:

CuSySe1鈭?i>y; Cu2鈭?i>xSySe1鈭?i>y; composition tuning; optical properties; counter electrodes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700