Nanospectroscopic Imaging of Twinning Superlattices in an Individual GaAs-AlGaAs Core鈥揝hell Nanowire
详细信息    查看全文
文摘
GaAs nanowires (NWs) exhibit different, zinc blende (ZB) and wurzite (WZ), crystalline phases and one generally finds an uncontrolled switching between both phases on a scale of 1鈥?0 nm. The change of crystalline structure and stacking fault density strongly affects the local confinement potential of GaAs NWs. Combining low temperature near-field spectroscopic imaging and transmission electron microscopy measurements performed on the very same individual GaAs nanowire allows us to gain an understanding of the local structure鈥損roperty correlations in such wires. From the photoluminescence measurements at subwavelength spatial resolution local characteristics of the band structure are derived. In particular, our method enables us to assign the observed band gap reduction to the high level of impurity dopants and to distinguish emission from ZB-type regions and from periodically twinned superlattice regions. In this way we demonstrate the ability to trace spatial variations of the crystal structure along the wire axis by all-optical means. Our results provide direct and quantitative insight into the correlations between morphology and optics of GaAs nanowires and hence present an important step toward band gap engineering of nanowires by controlled crystal phase formation.
<h4>Keywords: h4> nanospectroscopic imaging; GaAs nanowires; twinning superlattice; near-field scanning optical microscopy; transmission electron microscopy; crystal phase engineering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700