Synthesis of Zinc and Lead Chalcogenide Core and Core/Shell Nanoplatelets Using Sequential Cation Exchange Reactions
详细信息    查看全文
文摘
We present the synthesis of a novel type of chalcogenide nanoplatelets. Starting from CdS core or CdSe/CdS core/shell nanoplatelets, we use sequential cation exchange to copper and then to either zinc or lead to obtain ZnS and PbS core or ZnSe/ZnS and PbSe/PbS core/shell structures. The procedure preserves well the 2D geometry of the nanoplatelets, provided that they are more than 6 monolayers (1.8 nm) thick. The core/shell structure is also well conserved during the cation exchange as verified by TEM images. The nanoplatelets exchanged with Zn crystallize in a zinc blende structure, like the initial Cd-based material, whereas when Pb is used, the final nanoplatelets have a rock-salt crystal structure. We explored the copper cation exchange process using energy dispersive X-ray spectrometry with 1 nm resolution on nanoplatelets standing on their edges, and we show that copper ions diffuse uniformly from the outside of the nanoplatelet to the inside during the exchange.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700