Kinetic and Thermodynamic Modified Wulff Constructions for Twinned Nanoparticles
详细信息    查看全文
  • 作者:Emilie Ringe ; Richard P. Van Duyne ; Laurence D. Marks
  • 刊名:The Journal of Physical Chemistry C
  • 出版年:2013
  • 出版时间:August 8, 2013
  • 年:2013
  • 卷:117
  • 期:31
  • 页码:15859-15870
  • 全文大小:450K
  • 年卷期:v.117,no.31(August 8, 2013)
  • ISSN:1932-7455
文摘
Wulff constructions are a powerful tool to predict the shape of nanoparticles, which strongly influences their performance in catalysis, sensing, and surface-enhanced spectroscopies. Previous Wulff models focused on energy minimization and included contributions from the surface energy, interface energy, twin boundaries, and segregation-induced bulk energy changes. However, a large number of shapes cannot be understood by such thermodynamic approaches, in particular many of the twinned late transition metal (Ag, Au, Pt, Pd, etc.) particles of interest in catalysis and plasmonics. A review of the modified Wulff (i.e., twinned) construction is presented here, followed by the development of a modified kinetic Wulff model, which, by including kinetic parameters, explains the emergence of commonly observed shapes such as bitetrahedra, truncated bitetrahedra, thin triangular platelets, perfect decahedra, and decahedral rods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700