Oxidative Stability of Middle Distillate Fuels. Part 1: Exploring the Soluble Macromolecular Oxidatively Reactive Species (SMORS) Mechanism with Jet Fuels
详细信息    查看全文
文摘
The soluble macromolecular oxidatively reactive species (SMORS) mechanism has recently been applied to jet fuel thermal oxidative degradation at high temperatures (250鈥?50 掳C). The primary purpose of this work is to further test the extant SMORS mechanism with carefully designed experiments at lower temperatures. First, synthetic SMORS precursors, 2-methylindole and 1,4-benzoquinone, were doped into a stable Jet A-1 in both mono- and oligomeric forms. Flask oxidative stress of these solutions at 90 掳C for 60 min with an oxygen sparge significantly increases jet fuel thermal oxidative degradation. Second, a model compound experiment suggests SMORS precursors, phenol and 1,4-benzoquinone, are generated in situ from flask oxidation of a natural jet fuel component cumene (isopropylbezene) at 160 掳C with an air sparge for 300 min. This observation is particularly significant for the thermal oxidative degradation of ultra-low sulfur diesel (ULSD) because it suggests that fuels with low heteroatom content may oxidatively degrade by the SMORS mechanism. Third, doping parts per million (ppm) levels of 2,4-dimethylpyrrole into oxidatively stable jet fuels followed by flask oxidation at 95 掳C with an air sparge for 30 min results in significant oxidation of the jet fuels. This observation is particularly significant for the storage and thermal oxidative stability of Athabasca-tar-sands-derived middle distillates, which have previously been shown to contain alkylpyrroles; these middle distillates are predominate across the northern tier of the United States.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700