Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions
详细信息    查看全文
文摘
Noncovalent interactions such as hydrogen bonds, van der Waals forces, and 蟺鈭捪€ interactions play important roles influencing the structure, stability, and dynamic properties of biomolecules including DNA and RNA base pairs. In an effort to better understand the fundamental physics of hydrogen bonding (H-bonding), we investigate the distance dependence of interaction energies in the prototype bimolecular complexes of formic acid, formamide, and formamidine. Potential energy curves along the H-bonding dissociation coordinate are examined both by establishing reference CCSD(T) interaction energies extrapolated to the complete basis set limit and by assessing the performance of the density functional methods B3LYP, PBE, PBE0, B970, PB86, M05-2X, and M06-2X and empirical dispersion corrected methods B3LYP-D3, PBE-D3, PBE0-D3, B970-D2, BP86-D3, and 蠅B97X-D, with basis sets 6-311++G(3df,3pd), aug-cc-pVDZ, and aug-cc-pVTZ. Although H-bonding interactions are dominated by electrostatics, it is necessary to properly account for dispersion interactions to obtain accurate energetics. In order to quantitatively probe the nature of hydrogen bonding interactions as a function of distance, we decompose the interaction energy curves into physically meaningful components with symmetry-adapted perturbation theory (SAPT). The SAPT results confirm that the contribution of dispersion and induction are significant at and near equilibrium, although electrostatics dominate. Among the DFT/DFT-D techniques, the best overall results are obtained utilizing counterpoise-corrected 蠅B97X-D with the aug-cc-pVDZ basis set.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700