Toward Directionally Controlled Molecular Motions and Kinetic Intra- and Intermolecular Self-Sorting: Threading Processes of Nonsymmetric Wheel and Axle Components
详细信息    查看全文
文摘
We have investigated the self-assembly of pseudorotaxanes composed of viologen-type axle and calix[6]arene wheel components. The distinctive feature of this system is that both components are structurally nonsymmetric; hence, their self-assembly can follow four distinct pathways and eventually give rise to two different orientational pseudorotaxane isomers. We found that the alkyl side chains of the viologen recognition site on the molecular axle act as strict kinetic control elements in the self-assembly, thereby dictating which side of the axle pierces the calixarene cavity. Specifically, nonsymmetric axles with alkyl side chains of different length thread the wheel with the shorter chain. Such a selectivity, in combination with the face-selective threading of viologen-type axles afforded by tris(N-phenylureido)calix[6]arenes, enables a strict directional control of the self-assembly process for both the face of the wheel and the side of the axle. This kinetic selectivity allows both intramolecular self-sorting between two different side chains in a nonsymmetric axle and intermolecolar self-sorting among symmetric axles with alkyl substituents of different length.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700