Global Molecular Structure and Interfaces: Refining an RNA:RNA Complex Structure Using Solution X-ray Scattering Data
详细信息    查看全文
文摘
Determining the global architecture of multicomponent systems is a central problem in understanding biomacromolecular machines. Defining interfaces among components and the global structure of multicomponent systems is a central problem in understanding the biological interactions on a molecular level. We demonstrate that solution X-ray scattering data can be used to precisely determine intermolecular interfaces from just the subunit structures, in the complete absence of intermolecular NMR restraints using an example of a 30 kDa RNA-RNA complex. The backbone root-mean-square deviation (rmsd) between structures that are determined using the scattering data and using intermolecular distance restraints is about 0.4 Å. Further, we refined the global structure of the complex using scattering data as a global restraint. The rmsd in backbone structures that are determined with and without the scattering data refinement is about 3.2 Å, suggesting the impact of the refinement to the overall structure. Information about the "global correctness" of solution RNA structures could not be practically obtained otherwise, due to the molecular nature of the RNA molecules, but could only be defined by the scattering data together by residual dipolar couplings. This method provides a powerful new approach for refining global structures of macromolecular complexes whose subunits are elongated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700